MX4-Explo
ATEX monitor to detect combustible gases

Product description

- **MX4-EXPLO** to detect combustible gases (natural gas, butane, propane, hydrocarbons, solvents, alcools)
- Single sensor version with the opportunity to add until 3 other sensors (O2, CO and/or H2S)
- Gain increased instrument visibility with a safety orange overmold
- Draw samples from up to 100 feet with an optional, integrated sampling pump
- Realize true portability with multi-gas protection in single-gas size
- Ultra-bright LEDs, loud audible alarm (95 dB) at and vibrating alarm

Technical specification

- **Measuring ranges:**
 - Combustible Gases: 0-100% LEL in 1% increments
 - Methane (CH4): 0-5% of vol. in 0.01% increments
- **Extra sensors:**
 - Oxygen (O2)
 - Carbon monoxide (CO)
 - Hydrogen sulfide (H2S)
- **Case material:**
 - Polycarbonate with protective rubber overmold
- **Alarms:**
 - Ultra-bright LEDs, loud audible alarm (95 dB at 30 cm), and vibrating alarm
- **Ingress protection:** IP66 - IP67
- **Dimensions/weight:** 47 x 88 x 25 mm / 85 g
- **Boîtier:** ABS, peinture métallisée 3 couches
- **Protection:** IP54
- **Certifications:**
 - **UL:** Classe I, Division 1, Groupes A B C D, T4
 - Classe II, groupes F G (dust)
 - AEx d ia IIC T4
 - **ATEX:** Ex d ia I Mb / Ex d ia IIC T4 Gb
 - Equipment Group and Category I M2 et II 2G
 - ECEx
 - Ex d ia IIC T4 Gb
 - **CSA:** Classe I, Division 1, Groups A B C D, T4

MX4-EXPLO, diffusion version

- **Power source/run time:** 8 hours typical at 20°C
- **Dimensions:** 103 mm x 58 mm x 30 mm
- **Weight:** 182 g

MX4-EXPLO, aspirated version

- **Power source/run time:** 4 hours typical at 20°C
- **Dimensions:** 172 mm x 67 mm x 66 mm
- **Weight:** 380 g

Optionnal carrying case
LEL : Lower Explosive Limits

<table>
<thead>
<tr>
<th>Gaz</th>
<th>Plage de mesure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>2.5 % by volume</td>
</tr>
<tr>
<td>Acetylene</td>
<td>2.5 % by volume</td>
</tr>
<tr>
<td>Ammonia</td>
<td>15.0 % by volume</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.2 % by volume</td>
</tr>
<tr>
<td>Butane</td>
<td>1.9 % by volume</td>
</tr>
<tr>
<td>Butyl Alcohol (butanol)</td>
<td>1.4 % by volume</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>12.5 % by volume</td>
</tr>
<tr>
<td>Diethyl Ether</td>
<td>1.9 % by volume</td>
</tr>
<tr>
<td>Ethane</td>
<td>3.0 % by volume</td>
</tr>
<tr>
<td>Ethyl Alcohol (Etanol)</td>
<td>3.3 % by volume</td>
</tr>
<tr>
<td>Ethylene</td>
<td>2.7 % by volume</td>
</tr>
<tr>
<td>Ethylene Oxide</td>
<td>2.7 % by volume</td>
</tr>
<tr>
<td>Hexane</td>
<td>1.1 % by volume</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>4.0 % by volume</td>
</tr>
<tr>
<td>Isopropyl Alcohol (isopropanol)</td>
<td>2.0 % by volume</td>
</tr>
<tr>
<td>Methane</td>
<td>5.0 % by volume</td>
</tr>
<tr>
<td>Methyl Alcohol (méthanol)</td>
<td>6.0 % by volume</td>
</tr>
<tr>
<td>Methyl Ethyl Ketone</td>
<td>1.4 % by volume</td>
</tr>
<tr>
<td>n - Pentane</td>
<td>1.4 % by volume</td>
</tr>
<tr>
<td>Propane</td>
<td>2.1 % by volume</td>
</tr>
<tr>
<td>Propylene</td>
<td>2.0 % by volume</td>
</tr>
<tr>
<td>Styrene</td>
<td>0.9 % by volume</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.1 % by volume</td>
</tr>
<tr>
<td>Xylene</td>
<td>1.1 % by volume</td>
</tr>
</tbody>
</table>

Poisons Implications

A poison is a substance that will adhere itself to a Catalytic Bead and cause permanent damage to a portion or the entire sensing bead. A sensor that has been exposed to a poison becomes desensitized and cannot recover. A poison will shorten the life of a combustible sensor.

If you think the combustible sensor has been exposed to a poison, calibrate the instrument as soon as possible; crosscheck against methane.

Silicone Based Compounds:
In a curing state silicone will poison a combustible sensor.

Lead (tetraethyl lead):
Lead vapors will poison the combustible sensor.

Inhibitors Implications

An inhibitor is a substance that will adhere itself to the Catalytic Bead and cause the sensor to be desensitized. A combustible sensor has the potential for partial recovery from exposure to these inhibitors.

Exposure to inhibitors may effect the long-term life of the sensor. You can help recovery by having the instrument calibrated to Pentane gas.

Sulfure Compounds: H2S, SO2, etc.:
The rule is - If it is safe for you, it is safe for the instrument.

Halogenated Compound:
Contains one or more of the following:
- Astatine, Fluorine, Chlorine, Bromine, Iodine

Calibration

Calibration is the only way to identify if any loss of sensitivity has occurred to the combustible sensor, and identify if the sensor should be replaced. It is recommended to calibrate monitors every 6 months minimum.